Problem Solving & Decision Making with Google ADK
Autonomous agents that reason through complex problems, evaluate alternatives, and make decisions using multi-step reasoning.
Overview
ADK enables agents to solve complex problems by breaking them into sub-problems, reasoning about solutions, and choosing optimal actions from multiple alternatives.
Problem-Solving Agent Framework
Python - Problem Solver
from google_adk import Agent, Reasoning, OptionEvaluation
from typing import List, Dict, Any
class ProblemSolverAgent(Agent):
def __init__(self):
super().__init__()
self.reasoning_engine = Reasoning()
self.evaluator = OptionEvaluation()
@Tool(description="Generate possible solutions")
def brainstorm_solutions(self, problem: str, constraints: List[str]) -> List[str]:
"""Generate creative solutions"""
return ["Solution 1: ...", "Solution 2: ...", "Solution 3: ..."]
@Tool(description="Evaluate solution feasibility")
def evaluate_solution(self, solution: str, criteria: Dict) -> Dict:
"""Score solution against criteria"""
return {
"feasibility": 0.85,
"cost": 1000,
"time_estimate": "5 days",
"risk_level": "medium"
}
async def solve_problem(self, problem: str, constraints: List[str] = None):
"""Agent autonomously solves problem through reasoning"""
# Step 1: Understand and decompose problem
analysis = await self.reasoning_engine.analyze(problem)
# Step 2: Generate candidate solutions
solutions = self.brainstorm_solutions(problem, constraints or [])
# Step 3: Evaluate each solution
evaluations = []
for solution in solutions:
eval_result = self.evaluate_solution(solution, {
"cost": {"max": 5000},
"time": {"max": "10 days"},
"risk": {"acceptable": ["low", "medium"]}
})
evaluations.append({
"solution": solution,
"evaluation": eval_result,
"score": self.calculate_score(eval_result)
})
# Step 4: Select best solution
best = max(evaluations, key=lambda x: x["score"])
return {
"problem": problem,
"analysis": analysis,
"solutions_considered": len(solutions),
"recommended": best["solution"],
"score": best["score"],
"all_evaluations": evaluations
}
def calculate_score(self, eval_result: Dict) -> float:
"""Score solution based on criteria"""
return eval_result.get("feasibility", 0.5)
Decision-Making with Trade-offs
Python - Decision Making Agent
from google_adk import Agent, DecisionTree, TradeOffAnalysis
class DecisionMakingAgent(Agent):
def __init__(self):
super().__init__()
self.decision_tree = DecisionTree()
self.tradeoff_analyzer = TradeOffAnalysis()
async def make_strategic_decision(self, context: Dict, options: List[Dict]):
"""Agent makes decision considering trade-offs"""
# Analyze trade-offs between options
analysis = await self.tradeoff_analyzer.analyze(
options=options,
objectives=["maximize_profit", "minimize_risk", "maximize_customer_satisfaction"]
)
# Reasoning about best choice
decision = await self.decision_tree.evaluate(
options=options,
analysis=analysis,
context=context
)
return {
"options_evaluated": len(options),
"tradeoffs": analysis,
"recommended_option": decision["best_option"],
"reasoning": decision["rationale"]
}
Best Practices
- Enable agents to decompose complex problems into manageable sub-problems
- Provide clear evaluation criteria for decision making
- Implement trade-off analysis for competing objectives
- Enable iterative refinement if initial solution is unsatisfactory
- Document reasoning process for transparency and learning
- Test agents with diverse problem scenarios