Data Research & Analysis with Google ADK
Autonomous agents that explore diverse data sources, perform analysis, and generate insights without human guidance.
Overview
Data research agents use ADK to autonomously query databases, APIs, and files, analyze results, identify patterns, and generate comprehensive reports. These agents adapt their research strategy based on findings.
Research Agent Architecture
Python - Research Agent
from google_adk import Agent, Tool, ResearchStrategy
from typing import Dict, List
class DataResearchAgent(Agent):
def __init__(self):
super().__init__()
self.research_history = []
@Tool(description="Query database for specific data")
def query_database(self, query: str, table: str) -> List[Dict]:
"""Execute database query"""
# Agent formulates SQL based on research goal
return [
{"id": 1, "metric": "value1", "date": "2025-01-01"},
{"id": 2, "metric": "value2", "date": "2025-01-02"}
]
@Tool(description="Fetch external API data")
def fetch_external_data(self, source: str, params: Dict) -> Dict:
"""Retrieve data from external APIs"""
# Agent decides which APIs to query and parameters
return {"status": "success", "data": []}
@Tool(description="Analyze data for patterns")
def analyze_data(self, data: List[Dict], analysis_type: str) -> Dict:
"""Perform statistical or ML analysis"""
# Agent chooses appropriate analysis method
return {
"analysis_type": analysis_type,
"patterns_found": [],
"confidence": 0.85
}
@Tool(description="Generate research report")
def generate_report(self, findings: Dict, format: str = "text") -> str:
"""Compile findings into formatted report"""
return "Research Report..."
async def autonomous_research(self, research_goal: str):
"""Agent autonomously conducts research"""
# Phase 1: Formulate research strategy
strategy = await self.formulate_strategy(research_goal)
self.research_history.append({"phase": "strategy", "content": strategy})
# Phase 2: Gather data from multiple sources
data = await self.gather_data(strategy)
self.research_history.append({"phase": "data_gathering", "count": len(data)})
# Phase 3: Analyze data
analysis = await self.analyze_findings(data)
self.research_history.append({"phase": "analysis", "patterns": analysis})
# Phase 4: Generate report
report = self.generate_report(analysis)
return {
"goal": research_goal,
"strategy": strategy,
"data_points": len(data),
"findings": analysis,
"report": report
}
async def formulate_strategy(self, goal: str) -> Dict:
"""Agent creates research strategy"""
return {
"sources": ["database", "api", "files"],
"analysis_methods": ["statistical", "trend"],
"expected_duration": "5 minutes"
}
async def gather_data(self, strategy: Dict) -> List[Dict]:
"""Agent gathers data from strategy-specified sources"""
return []
async def analyze_findings(self, data: List[Dict]) -> Dict:
"""Agent analyzes collected data"""
return {"trends": [], "anomalies": [], "conclusions": []}
Adaptive Research with Agent Learning
Python - Adaptive Research Agent
from google_adk import Agent, Learning, Adaptation
class AdaptiveResearchAgent(Agent):
def __init__(self):
super().__init__()
self.learning_model = Learning()
self.adaptation_engine = Adaptation()
async def conduct_research_with_adaptation(self, goal: str):
"""Agent adapts research approach based on findings"""
# Initial data gathering
initial_data = await self.gather_initial_data(goal)
# Agent learns from initial results
insights = await self.learning_model.extract_insights(initial_data)
# Adapt research strategy
if insights["more_data_needed"]:
# Agent decides to gather more specific data
refined_sources = await self.adaptation_engine.recommend_sources(insights)
additional_data = await self.gather_focused_data(refined_sources)
# Combine and re-analyze
combined = initial_data + additional_data
final_analysis = await self.deep_analysis(combined)
else:
final_analysis = await self.initial_analysis(initial_data)
return {
"initial_insights": insights,
"adapted_research": refined_sources if insights["more_data_needed"] else None,
"final_findings": final_analysis
}
async def gather_initial_data(self, goal: str):
"""Initial exploratory data gathering"""
pass
async def gather_focused_data(self, sources: List[str]):
"""Focused data gathering based on initial findings"""
pass
async def initial_analysis(self, data: List[Dict]):
"""First-pass analysis"""
pass
async def deep_analysis(self, data: List[Dict]):
"""Deeper analysis after adaptive gathering"""
pass
Multi-Source Data Integration
Python - Multi-Source Research
from google_adk import DataSource, Agent, Integration
from typing import Dict, Any
class MultiSourceAgent(Agent):
def __init__(self):
super().__init__()
self.integrator = Integration()
self.data_sources = [
DataSource("sales_db", "postgresql://sales"),
DataSource("customer_api", "https://api.customers.com"),
DataSource("logs", "/data/logs/*.json")
]
async def unified_research(self, query: str):
"""Query and correlate data across multiple sources"""
results = {}
# Gather from all sources
for source in self.data_sources:
try:
data = await self.query_source(source, query)
results[source.name] = data
except Exception as e:
results[source.name] = {"error": str(e)}
# Integrate and correlate findings
correlated = await self.integrator.correlate(results)
# Derive unified insights
insights = await self.derive_insights(correlated)
return {
"sources_queried": len(self.data_sources),
"correlations": correlated,
"insights": insights
}
async def query_source(self, source: DataSource, query: str):
"""Query individual source"""
pass
async def derive_insights(self, correlated: Dict[str, Any]):
"""Extract insights from correlated data"""
pass
Best Practices
- Enable agents to formulate their own research strategies
- Implement iterative refinement based on intermediate findings
- Allow agents to adapt data sources based on results
- Provide clear success criteria for research completion
- Log all research decisions for transparency and improvement
- Support multi-source data correlation and integration
- Implement confidence scores for research conclusions